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ABSTRACT

A three-dimensional blunt body inverse technique is formulated in terms

of two-component stream, functions in the spirit of the Ferri, Vaglio-

Laurin axisymmetric blunt body method. In a similar manner to the

axisymmetric case, transformations are found that reduce the elliptic

asymmetric shocklayer to a transformed space inwhich shock, stream-

lines (or the intersections of stream surfaces), body, and sonic surface

are a priori known, so that numerical analysis procedures are consid-

erably simplified. Provided three equations in the three velocity com-

ponents of the transformed space are numerically solved, then inverse

transformations are given so that the corresponding velocities, pres-

sure, and density at a point in the physical space may be determined.

The class of given shocks considered are portions of prolate ellipsoids

in the physical space.
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I. INTRODUCTION

In order to predict the subsonic inviscid flow field region about blunted bodies

without axial symmetry, or axisymmetric or asymmetric bodies at an

angle of attack, a detailed analysis of an improperly set elliptic system of

nonlinear equations must be solved by a stable finite difference scheme.

For axisymmetric bodies (at zero and at small angles of attack) many

problems associated with a straightforward approach to the above problem

have been minimized by transformation to a new space upon whose bound-

aries the boundary conditions are known (Refs. 1 and 2), and where velocity

distributions at the axis and in the neighborhood of the sonic line are

a priori determined and used as boundary data. In addition, the domain of

influence of the sonic line is known a priori, leading to uniqueness of the

computed body for a given analytic shock; further reasons for attempting

an extension of this method for three-dimensional flows are obvious from

the discussion presented in Ref. 2.

Previous analysis of regions of this type (Ref. 3) by series expansion

methods, with a Clebsch transformation, generally leads to a great deal

of computation, indicating the necessity of an analog to the comparatively

simple and theoretically sound method of Refs. 1 and 2. In most cases of

Ref. 3, two or three terms of the expansion (involving the solution of the

associated ordinary nonlinear coupled systems of equations) were necessary

for shock and sonic line shapes.
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0
At present, numerical methods of the kind necessary to fully understand

error analysis for the type of calculations suggested by the inverse prob-

1
lem have not been fully developed; however, the methods of Refs. 4 and 5

suggest approaches for improperly set Laplace or Cauchy-Riemann systems

with regard to round-off error analysis, approximation error, necessary

step size, etc., for the linear problem.

Provided the sonic surface is known (or the elliptic solution canbe extended

sufficiently past the sonic surface as is sometimes done), a number of

three-dimensional characteristics methods can be used (Refs. 10, 11,

and 12) to continue the solution into the hyperbolic domain.

In accordance with this discussion, then, an inverse method is developed

in the spirit of the Ferri, Vaglio-Laurin method for three-dimensional

flows about nonaxisymmetric zero angle of attack bodies. A transforma-

tion of the region R 1 (Fig. 1) to a region R (Fig. 2) is effected, and sub-

sequent development of a suitable stream function pair leads to a system

of three nonlinear equations in the unknown velocity components in R,

which are solvable by the method of Refs. 1 and 2, when extended to three-

dimensional nets. Solutions in the transformed space are then transform-

able into the physical space for the actual flow and resulting streamlines.

i

lReflection methods for elliptic systems have been used to obtain symmetric
hyperbolic transformed systems for the flow about blunted bodies at a small
angle of attack (Ref. 4). For such systems, stable numerical techniques
and error estimates are to be found (for example Ref. 5 through 9) in con-
trast to the "marching" method for improperly set elliptic equations.

2 Many additional comments concerning the numerical and theoretical methods
of Ref. 8 are presented in Vol. II of the report (in preparation).
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In that the axis flow is not completely a priori determined from the

resulting system of equations, it is recommended that the bounding

surfaces be taken as the shock, sonic surface, and body approximation

surface in the R space for purposes of computation. From a computa-

tional standpoint, round-off errors, say on the initial surface, propagate

exponentially and, therefore, obviate methods of filtering high frequencies

for stable solutions; alternatively, for a high accuracy difference scherme,

only a few steps are necessary across the shock layer so that growth of

round-off error is lessened. For known flow boundaries, the latter

alternative leads to difference equations always satisfying the sonic

surface given boundary condition. From Ref. 2, from the fact that stream

surfaces are a priori known, a lower-order difference scheme is neces-

sary, since the order of the system has been reduced. Although details

of the numerical analysis will not be dealt with in detail here, it is possible

to see that many of the numerical simplifications of Refs. 1 and 2 carry

over to the method to be indicated. Although solutions may be computed

by a variety of methods extended from their axisymmetric counterpart,

the method of Refs. 1 and 2 appears to be singular in the use of known

information on the axis and sonic surface, leading to a more theoretically

sound and numerically simple method in the extension to a higher

dimension.

For a specified asymmetric portion of the shock surface given over the sub-

sonic and transonic regions (here taken as a portion of a prolate ellipsoid),

-3-



the method indicated in this report may be applied to determine the

three-dimensional shock la.yer in detail and also the body shape.

Knowledge of the aerodynamic characteristics (pressures, velocities,

etc.) in the nose region of a particular "lifting" surface may be deter-

mined by this method, and inputs to a downstream characteristics-

routine established. In this manner, total aerodynamic analysis of fully

three-dimensional lifting bodies may be theoretically performed in order

to obtain design criteria for such bodies.
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II. SOME PRELIMINARY CONSIDERATIONS FOR A THREE-
DIMENSIONAL INVISCID BLUNT BODY INVERSE METHOD

The equations governing the steady three-dimensional rotational flow of a

compressible inviscid gas may be written in general vector form as

v. pV = 0 (1)

p V v)V" + vp = 0 (2)

V •V(p /p = 0 (3)

where the (") denotes dimensional quantities.

For a three-dimensional blunt body inverse technique formulated in terms

of a curvilinear coordinate system, a coordinate surface corresponding to

the shock surface is chosen as a portion of an ellipse of rotation about the

z-axis. This portion is to lie in the half-space x < 0, where the x = 0

plane extends past the sonic point on the shock surface. The free stream

velocity vector V0 is parallel to the x-axis. In oblate spheroidal coordi-

nates the metrics are

2 cosh 2 2 cosz

1 (cosh 2 cos2 71) C C (cosh-- - cos 2')

h 2  cos (4)
h3 = C2 cosh2 • cos 2 71
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fo r

SC sinh Z =sin 3 sin (4a)

The coordinates t,, tZ, 93 are the curvilinear coordinates; values of •,

il, ý are essentially parameters constant on families of the l, •2' 3

coordinate surfaces, respectively. Nondimensionalization by free-stream

values,

Suv w p p
, v--V- , w -- , p=- , p

Vo ao Voo p PVo

S N (4b)

is next performed on the system (Eqs. 1 through 3). Note that the metrics

(Eq. 4) are

2 +C2 g2 i 2
2 1 + h 2 1 - h 1 - 3 (4c)

1 a1 + C 92 a+i 22  ( + C I(1 2- )

and the surface • = const. corresponds to an ellipse of rotation about the

z-axis; the surface iq = const. corresponds to a one-sheet hyperbola of

revolution about the z-axis; and r const. corresponds to a plane through

the z-axis (Fig. 1). The constant C corresponds to the origin-to-focus

distance of the coordinate system, or the radius of the a = 0 disc.3

3C is the common focus point of the a const., 1 = const. surfaces; the
plane z = 0 minus the a = 0 disc is the surface Tj = 0.
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For the range 0 < ý s (where a is taken to represent a portion of the

prescribed shock in the half-space x <0) 0 < < Tr/Z, 0 < ý, <Tr/2, points

(•• •) of the prolate-spheroidal coordinate system cover the space of the

three-dimensional shock layer (R 1 ) lying between as and B(ar, T,), the

coordinates of a computed body surface. The shock s and M are chosen

such that the focus of as lies inside of the computed body corresponding to

ýs. In this coordinate system (Fig. 1), then, Eqs. (1), (2), and (3) become,

in scalar form

u h 2 W 8 (6))

u (pp-Y) + v- (Pp + 2L 8 (pp- ) = 0 (6)

au v au W u h ( ah • h)+ (u, 1hahw 5)

+ 1 8p 0 (7)

u a y w 8 v+h h 2 ~h 8h 3 ) +u ( ah 2  3h 1 )
nov v av W .+W-I +• T 2 - +• T +3--aJ ý-• w3 --h T3 8T2 I; a--ua

+ 1 • p 0  (8)

u aw v w w +hu (wh3 8hl v h wh3 8h

3 8Y3- h 3h1 _W __ 33 , -2-aaF

+ 1--•-• =0 (9)
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or vi\ +1, i.}v I + Ig"J-2,. 0 i , (PV o
(5a)- (9a)'

v (P -Y). =
Via(pp 0 -

axJ
i

where v are the contravariant velocity components.

A point P(,l' ,Z' ý3) E(RInA) is formed by the intersection of the orthogonal

AA(•I •Z 3) surfaces; at P, on the plane r = const. , unit vectors ei, e2 are

tangent locally to the , = const. and T = const. traces on r const. ,

respectively. The unit vector 0 3 lies in the direction of e X e 2 (L to the

plane •).

The intersection of ý, r1 lies on a circle (at z = const. ) with the unit tangent

vecto Avector eA3. The lI e 2 ' eA3 vectors change direction according to P. The

vectors Vý 1 , Vý2' Vý3 are i to ýl, ýZ' 3 , respectively; therefore,

e= h 3V7 3 . If now d73 is tangent to the ý3 circle, IdF-3 1 = dS 3 , then

dFr e = dS = d h3 , or dS3 = h .dý3 . Similarly, 2 2 h 2Vg2 '
3 3 3 = h73 Tý 3  d 3

e = hV•7l , or dS 2 = h 2 dý2  dSI = hl d . The unit vectors are such

Ae A A A Athat I = e. X e 3 ' 2 x e 1 , and 03 1 .2

In this coordinate system x = -cosh ý cos ] sin r, y = C cosh ý cos i cos

z = C sinh ý sin TI; in a plane t = const., the coordinate surfaces T, 1 are

of the form

2 2 2 2
z + P - 1 , (10)

C sinh 2 C coshZ U CosT C2 sini
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where p2 = + y 2 , = 0 corresponds to x = 0, and T = r/2 to y = 0. In

order to transform the (ý,ri, TI) system (Eqs. 5 through 9) into a coordinate

system (a-, ,-, Tr) in which the shock, body, stagnation streamline, and sonic

surface are known in terms of values of the new coordinates in the manner

of Ref. 1 (the method of Ref. 1 pertains to axisymmetric elliptic regions),

stream functions (Refs. 2 and 3) 0, @ are introduced. Note that the mass

flow r;o I through a portion A of a surface, A, covered by curvilinear

coordinates, a and p, (with metrics, h and k) is

m = ff (VriXVOVY dS

rf [(h4 a- 1 + kýT2) X (hh a1 + k b-)] h-3) dadp

+ P13 Pa 32)] hkdcd
An

= 41 - J o - 01) (11)

therefore, for a plane -x = const. (IV 0o) divided into rectangular "boxes"

by z = const. and y = const. planes, p0oV0o(zn - Zn-l)(Yk - Yk-1

4n " ýn-)(ok - Ok-l) represents the rn in terms of the area of a

particular "box. " For plane flow (yk - Yk-I) = I, (0k - k-1 = 1, and

(Eq. 11) becomes moo = (4, - yi)

Consider next the independent variable transformation

si sinh sin Co cosh ý cos 11 cos [

= CPi )(T~ sinh ~(12)

(Fian-j)(-9-



or

a 12 1Tr " T (I 2a )

where a, P, a', P1 are constants. Through Eq. (12), the region RIC) A

transforms to RiflA; that this is true will be demonstrated after the

following preliminary remarks leading to a method based on Eq. (12) and

generalizations of the mass flow integral Eq. (11).

For certain of the more elementary methods of the first type, it is neces-

sarythat normal derivatives h 1
1 u/3E, 1 h 1 v/Oa 1, h;11w/ 1 , h11ap/8 1 3,

and h 1
1 8p/ 8a, 1 (and higher derivatives) to the s surface be determined

in terms of known tangential derivatives and evaluated from shock data.

In this manner, provided a high accuracy difference scheme is coupled

into the method, data is found on an adjacent ý surface to the shock after

multiplying by a suitable /A value. Repeating the evaluation of the

derivatives, the entire flow field is then determined, provided certain

finite difference conditions on optimum step size, stability, systematic
4

errors, truncation error, etc., are satisfied. These conditions have

4 Straightforward methods of this type for three-dimensional flow will in-
variably experience numerical difficulties from growth of round-off error,
etc., and require progressively more non-central high-order difference
schemes to be used in conjunction with the ý set of derivatives near the
sonic surface, therefore, implying a much increased manipulation of num-
bers (and techniques) with no guarantee of convergence to sonic line values.

0
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only been theoretically determined for the improperly posed Laplace

equation (Refs. 13 and 14); however, it is assumed that the underlying

principle of these more simple cases carries over to the elliptic non-

linear system of equations. A more satisfactory approach is based on

certain transformations (Refs. 1 and 2) initially made on the PDE system

in order to reduce numerical difficulties associated with the above method.

In this method known sonic line boundary conditions are naturally intro-

duced, and, in addition, flow boundaries and streamlines are known in the

transformed system permitting a reduction in the order of the transformed

system. Application of known sonic line boundary conditions (M >> 1)

are generally absent from methods of the first type. As both methods

essentially involve marching methods, clearly generalized considerations

of Refs. 13 and 14 are of significance. Other types of solutions for three-

dimensional subsonic flows are suggested by Ref. 3, in which systems of

nonlinear ordinary equations for terms of a series expansion for density

and stream function pairs about the flow axis are derived; further con-

siderations to solutions of this nature will not be given in this report,

however.
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For the first method, normal derivatives from Eqs. (5) through (9) are

a u u lu

av 8v av

-w N L[A a w +B aw + C , (5a-8a)

3p 3p 3P

ap \p ap

IN! #O0in R1 fAfor M < (9

whe re

h1 0 0 0 u/p

o 0 0 up-Y' _-u•pp-y

N= u 0 0 i/p 0

0o u 0 0 0

o 0 u 0 0

o I 0 0 v/p

0pv -v-I

v 0 0 0 0

0 v 0 0/p 0

0 0 v 0 0
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-0 0 1 0 w/p-

0 0 0 wp w

B= w 0 0 0 0

0 w 0 0 0

O 0 w i/p 0
1 81 a 1 a

(1h hhhh 3 3 ( (hIh 3 ) h (hlh 2 ) 0 0

2 3 h I
1

h2h38T2hIh 2h 3 'F3

0 0 0 0 0

C _0hh_ 8-_ - va•l h a'3 =~ w-- l 0~ 0

0 h 1h h ah1  lh 1 8h, 8h3)

0 8- -w 0 0

h T3 3 h 2 , 1 / 73 ah 3 31 A2 h, 1 lh2 Ih3) 0 0Fu ,h -8-q - h h-•f
2Tý 23\ý F

and boundary conditions on the prescribed s = const. shock are, for a

perfect gas at constant Y, at a point P(Ys,', ,), for V = En nhnfn

u cos il sin sinh (Y 1)m2s +N
f s _ s O, (10Oa)

hl hl(sinh 2 s + sin)2 I/)1 / 2  (N + 1)MNool, N

P + N (M0N- 1)] f 3 -W h 3, (1la-12a)Ps= oN 3 h3

f sin Tj sin ý cosh s 1 (Y + l)M o N
Ssi s 1 oo, N

finh2 + sin 2,)I/ 2 F Ps+

(13a-14a)

-13-



where M =M 2Cos r2 sin 2 sinh 2 t(sinh iI and the
Co, N o00 Ts/ as the

corresponding entropy is

S[ ( (-, N 1)M0,N+ (13)Ss-So= log + 2-Y- )i

while on the body, b, S = S max. = const. (13a)

[d~l(cosh 2 Cos z 11))i/-] cd~z (cosh 2 Cos2 /

b b

dg3 cosh ý cos T1

w cos C (14)

Suppose now that Eqs. (5) through (9) are subject to independent variable

transformations (Eq. 1Z) by means of two-component stream functions,

but not put into Eqs. (5a) through (9a) form, as the calculation scheme

proposed does not require this form. Then conditions on the sonic surface

may be determined by characteristics methods so that RrlA conditions are

known on a closed boundary.

In that curvilinear coordinates are used throughout, differentiations with

respect to coordinates are best done expressing vectors in their contra-
3

variant form (e. g. , V n h fn, where fn are components of a
n1- n n

-14-



contravariant vector); this provides a systematic formalism for the

effects of differentiation of the "unit vectors. " In general, then, for

the velocity,

3 n + fm n

n h n +L E nl (14b)
n=l m=l

or the components of the contravariant vector which correspond to the

derivative of the ordinary vector with respect to •. are
in 1 f 3

f =a + L m I " The symbol mjdenotes the Christoffel

symbol of the second kind, generally formed from those of the first kind

fro ikj I = gkca[ij, a], where [ij, k] = 1 ( gik + x + gjk _ -giJx , and gka
/~ 2_ ___ andga

is the contravariant tensor g'J = Gij/ Igij I, Gii is the cofactor of the

element gij in I gij1. Provided transformations are next taken with the

covariant law, then (for scalars), with Eq. (1Za),

8( au- IT 0-T a()

0() o o- OT o ___ (15

where the column vectors of J represent covariant vectors. In terms of

these quantities, then, the derivatives of the boundary conditions

(Eqs. 10a through 14a, and 13) may be expressed in terms of the

Christoffel symbols, using Eqs. (4a), (4c), and (l.4b).

-15-



0
At the sonic surface,

-Y +fY,+)1 P(16)

holds. Also, from Eq. (12a) at the shock

2 2s2
z2i s 2s 2 2 2 2

ZY 2 t I
- 00 +4 M + 1 2 l )4 's

ils + C 7

22 .2 -"

2+ (Y - I)M 2  ) (C + - 4)/K 1 ))

x.
/ Z 2_•l 92(2 -° 4)2,, - c•+ ls(•• ,•K

(0 + 1)M\C ' '

(ls +4'2 1

(17)

The constants K 1 , K2 are defined at the shock by Eqs.2.(18)and(9); at the

shock front in either coordinate system, (C-, ,-, t) or ( g2 , 3), f is known

from Eq.(lZa) and the related inverse relations. The relation Eq.(17)

holds throughout (RIflA) and, when used numerically with Eq. (1 6), yields

a method whereby the sonic surface may be computed (Refs. 1 and 3).
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To describe the transformation (Eq. 12), consider the quantity JlE as a

small positive constant, le I << 1. The quantities a, p, a', 3' are also

small constants, or scale factors, on T, T (Eq.. 12 and iZa). By con-

struction of a suitable approximation surface (to be described later in this

section) through the neighborhood of z = 0, y = 0 on the -x = const. plane

(stagnation point), and on the stagnation streamline though this point to

the =is const. shock, ý and 0 are of the order of o 2 on this surface.

On the body surface, where 4 = 0 and 0 = 0 simultaneously, the tp, 0 are

of the order of I( I on the approximation surface Q- in the neighborhood of

any point on the body surface. Away from these regions, 4 >> Ij E,

St> je and may be considered simply as Lp, 0 respectively. On the

shock, from Eq.( 1Z), as-sume (aT/sinq) = const. , (p0-/cos ,) = const.

so that in terms of (T, T, 7r) coordinates, r = (const. ) sinh ý. Then, as

1 = const., the prescribed three-dimensional shock in oblate-
s

spheroidal coordinates transforms to 1 = (const. ) in the new system

(Fig. 2). As 0 <- < Tr/2, 0 < T< const.; 0 < ý < ir/2, 0 < a < const.,

outside 02. On ýs, coordinates (•,,r) determine a point; corresponding

to this point is (T, T) on Tr = (const. ). For a locally nonvanishing Jacobian,

then, a portion of the shock A( s, T, t,) may be mapped into a region

A'(Tr, (, T) in the new coordinate system. Provided next the box-like

regions (see Eq. 11 for simplified discussion) on the -x = const. plane

are projected onto the s = const. shock (Fig. 1), then on the shock surface

-b sinh • sin il - z (18)

- cosh cos r, cos y (19)

-17-



orfn d ,fn dz and fk do fk dy for regions away from the

4n- 1 n-i C-i -
Q trace on s The projected box-like regions do not, in general, conform

to the curvilinear iq, ý system on the shock surface, S* Immediately

downstream of the s shock, relations Eqs.(18) and(19) are no longer

valid. For a streamline of the flow field (which lies along the inter-

section of i = const. , = const. surfaces on a common value entropy

(S/R) line imbedded in both surfaces), the conditions become t = const.

S= const. on a general streamline, or, from Eq. (12),

const. const. (ZO)
QT - sinhg 'coshp cos ()

and in the neighborhood of the body

QT = L'/z - I/ /)
sinh cosh cos (1

as O(G) ~ 0( 1 I); 0(p) - 0( J€ 1), near the part of 0 over the body.

In that the stagnation streamline and body stream surface have an entropy

(S/R)s, it is necessary that a suitable representation be found for com-

binations of the new doordinates to represent the adjoining stagnation

streamline and body as a surface with similar properties; to facilitate this

representation, a surface consisting of a tubular region of radius I E1

surrounding the stagnation streamline joining a surface that envelopes

5 Note that the regions of 0 are chosen such that the JE I inequalities are

satisfied for a definite, given JE I value.

-18-



the body (within of the body) is assumed to represent the (S/R)s

surface. In this manner a continuous approximate surface5 is con-

structed that lies arbitrarily close to the actual stagnation streamline

and body surface, by suitable choice of an I c I value. In the limit as

t I -* 0, the actual stagnation streamline and body surface are exactly

approached. Now in the region of the stagnation streamline,

o! cos 0~o(•q) ~ o(IEI), 0 < ý <: s (as the focus of the coordinate

system is assumed to be within the body) so that in the limit It I - 0,

r - 0, a-- 0, and iT appears of the order of magnitude alimax Isinh ý
1 sl <5

in the region of the stagnation streamline just behind the shock (6 is a

small positive constant). This, then, in (0-, T, T,) coordinates, appears

to be the TT axis, rr < (const. )max I sinh • In the vicinity of the body
I -sl <5.

surface, g > 0, Tr/2 > T > 0, Tr/2 < t < 0, away from the tubular region and

near 0i. The transformation system near 02 is then,

( car) sinh ý sin =-j (22)
sin T

coshg cos cos E (23)(cos =

T -cos a a sinh (24)

Suppose that IE I2 is negligible with respect to I E and I is taken to be

a small positive constant in the neighborhood of the body. From

Eqs. (22), (23), and(Z4), then, O(cT/sinil) - O(1E I /m), O( G/cos i)--

0(1E I/n), where n, m may be chosen >1 for large •, p and for conditions
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sufficiently far from the stagnation point region. Then

O(Tr) -- 0[( 1• 12 /mn) sinh ý] . On the approximate surface, then, for

conditions applicable near the forward part of the stagnation streamline,

part of the Tr axis is reproduced; further, for conditions on the body

surface sufficiently far from the intersection point (-q > 0, ý > 0, • large)

the Tr surface becomes asymptotically close to the Tr = 0 plane. The

region of 0 in the vicinity of the stagnation point, or the juncture of the two

approximate surfaces is yet to be examined. Initially, consider the z, y

planes tangent to the outside of the I E I? tube and those that describe a

square within the tube on the plane -x = const. ; the 0, @.planes lying

between these surfaces (in this approximation) then generate an infinity

of (t, 0) pairs such that any ip, 0 pair in this region forms streamlines

lying both on the IE I? tube and the approximation stream surface within

I E I of the body surface while still imbedded in ý2. On the approximation

body surface, then, for a 14 I ý 0, specifying a point (gr 1 , •) leads to a

point (o, T, Tr- 0) in the new coordinates for regions sufficiently far from

the stagnation point. In the region near the stagnation point on 0, suppose

that O(ý),- O(1 E ), then 60(ur)- O(aIP E I). Here it is assumed that in this

region the O(sin 0-),- O( 1 E I), O(cos -./2-) - O(1E I). The value of

sinh ý for g >> 1 is effectively of the order of 1/2 eý; for g small, then,

O(sinh ý) -O(-I/Z e-%), (• > 0). For (ar/-sin T) and (pa/cos ý) of the

6Here it is assumed that the coordinate point (0, g,Z 3 ) lies in the region
of the stagnation point; note also that the stagnation point lies interior
to 0 in the neighborhood of that point.
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order of Iel # 0 for T > 0, ý <Tr/ on the body (Fig. 1), then

O(Tr) -• O( 2). The constants a., P may be suitably chosen according to

the degree of magnification of the T, T, Tr coordinates desired for a

particular problem. For p, 0 increasing, then, the value of Tr is >0,

consistent with the streamlines passing between the shock and body in the

(T-, T, Tr) space. These streamlines originate at intersections of ý = const.,

S= const. surfaces on an x < 0 plane, or equivalently, the mappings of

these intersection points onto the Ir = const. plane in the (T-, T, Tr) space.

For ý large, then, sinh ý is effectively larger; therefore, the scale of

the Tr coordinate is exaggerated. The surface corresponding to • = 0 is

the surface of disc r = C; by requiring the stagnation point to be close to

the focus of the coordinate system, then, the three parts of the approxi-

mation surfaces satisfy the properties previously designated. In this

manner, the forward part of the stagnation streamline just past the shock

transforms into part of the Tr-axis; the part of the stagnation streamline

closer to the stagnation point lies on a surface O(7T) - 0( j4 I), and the

surface covering the body within ]r I possesses the property that

O(Tr) - 0( E I ). In the quadrant of the (T-, r, Tr) space into which the

quadrant of the physical ( 0,',) shock layer space has been mapped, this

surface is then of the general nature of a hyperbola of revolution with the

1T, (r, and T axes as asymptotes. Note that from Eqs. (16)and (17), and the

7 Obviously the magnitudes of these constants are determined from geo-
metrical considerations based on the chosen s shock, Moo, C, etc.
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results of Section IV, the sonic surface may be constructed; the closed

region R lrA therefore consists of the given shock, known sonic surface,

and 0 in (a-, T, Tr) space (Fig. 2). From Section IV it is also possible to

construct stream surfaces, a priori, through this region. Note, also,

that for transformation of vector quantities, Eq.. (14b) must necessarily

modify the form of Eq. (15) due to the presence of contributions from the

differentiated unit vectors. This, then, roughly describes the bounding

surfaces of the physical shock layer in terms of surfaces of the (,T, T, Tr)

space, provided certain assumptions are made concerning approximation 0

surfaces to the actual (S/R)s surfaces. The Jacobian of the transformation

(for scalars) is

ac a3cr

Z T (25)

aTr 8ir air

and J and the inverse j = J- are to be values bounded away from 0, eo in

the region bounded by the shock, sonic surface, and the continuous surface

enveloping the stagnation streamline and body, in order to guarantee a

continuous one-to-one mapping of points in one space to the other. This

condition may require adjustment of the arbitrary constant values intro-

duced throughout this Section.
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III. THREE -DIMENSIONAL STREAM FUNCTIONS
OF CLEBSCH AND MORE GENERAL TYPES

For the inviscid three-dimensional rotational flow of a compressible gas

in a oblate spheroidal coordinate system, the streamline equations are

obtained as integral curves of the energy equation

u cosh )112 _alCos Tj 1/2 k(
coshZ• - cosTI (cosh - cos )

+W Cosos 0 P= (26)

as

( codhc2 C s 2)1 - cos

u cosh C v cos l]

d 3 cosh ý cos
w Cos (7)

The general. integral of Eq. (26) is of the form p/p' = f[4b( , U,, u,v, w),

( ,TI, ,, u, v, w)] where f is determined8 from initial values of p/p"' on the

streamline intersection of • = const. , = const. surfaces with a shock,

8 See Eq. (17).
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here taken as a portion of the coordinate surface • = const. for x < 0. In

that both q and 0 satisfy Eq. (26) individually, it follows that

cosh + cos 11

(cosh2 • - cos2Z C(coshZg - cos? )

+ cos 0 (28)
C cosh g cos 11 t(

and

( cosicsh • co:cs 2 T )1u o h ý 2 1/2 0€• + v Co 1 1/2 0 ý2
(cosh t . Cos2) 1 1 C(cosh2• _cos ZI)

+ w cos 3 =0 (29)+f C cosh ý cos 7103

Solutions u,v,w of Eqs. (28) and (29) are determined to within a propor-

tionality factor: by requiring these values to satisfy the equation of

continuity

a C 2 cos cosh 2 Cs2'

-al ,Cos t ,1• -/F 2 - -12

+ Pv os coshzg - Cos)n

c sh 2  - cos 2  1] =0 (30)

+cosh cos i
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it follows that u, v,w are determined 9 in terms of the 0, • stream

function pair as

U = Cos cosh o ( - ) (31a)( 2 C

V = I [(o sha _ c 3 ( - (ý 131b)[P Cos 11 cosh 2 Cos 2 T

wc c TIrcosh I 1 - (31c)

which are the components of V = i/p("tbxVo). In order to transform the

basic quasi-linear first-order system (Section I) into another first-order

system by means of dependent variable transformations based on Eq. (31),

it is necessary that inverse relations of the form

t= • ( Zlt2 , 3 ,u,v,w,p) , =I2 t,(tl,•, 3,u~vaw'P)

S-3 , =l 1(I1 1 'u2 ' w' P) 0 (1 = 1  2, 3'u'v, w,p)

1'z og2ý ' •_ 3' u' v'w' P) ' ý = Ot3( ,•2' 9 3' u' v' w' P)

9 Alternatively, VO =Vq/x(-p/IV012 )V; note that if L is given, then

0 (VLxpV). dx-
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are known. Clearly the system (Eq. 31) is not sufficient for this purpose

as implicit function theory yields only relations (for example) of the form

cZ Cos Il•3/a(pu) - 1 cosh •8 3/8(pv) = 0, which lead to general

integrals only reasserting conditions Eqs. (28) and (29). Additional

assumptions are, therefore, necessary for determination of suitable

inverse relations from Eqs. (31a), (31b), and (31c), provided this system

is to be used to reduce Eqs. (5) through (9).

Transformations of the type V I/p(V•7xV7) are Clebsch transformations.

An alternative type is

puhlh 3  (32)

pvh h3  + ) (33)

pwhlh2 = (34)

where the metrics are as given in Eq. (4c). Provided pV = curl A then

the existence of real 4, 0 surfaces in(ROA) becomes the problem of deter-

10mining real values for

10For aVxB =VqbxVo, B1 ZhI = 0i- @•i B 2 h2 = L2 - 2'

B 3 Zh3 = -•3 illustrating the difficulty associated with a form

corresponding to Eqs. (35) and (36) for this transformation. The forms
Eqs. (35) and (36) are nonunique, however, as A. terms are determinable
to within an arbitrary gradient. 1
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= A (hzAz) dý2  (35)

V 3E g 3(RInA)

= - hlA1 + - (h2 A2 ) dg 2  (36)

For the 0J, € stream functions of Eqs. (32) through (34) to satisfy Eq. (26)

individually, as (Eqs. 28 and 29), then

-h pl I h 2 ýýp -h3 3 uh 3
h1 - 2=- Z - - w (37a, b,c)

from Eqs. (32) through (34). This follows from the requirement that a

point on a streamline is imbedded on both 0 and ýj surfaces.

On the 4b = const. sheet and the 0 = const. sheet, respectively, additional

relations follow from

h ljý1dgl h1 + h 1 g2 dý2h2 + h'3P31d93h3 = 0 (38)

h 1 idý lhI + h2 zdgah + h3 3 0Jd93 h3 = 0 (39)
1 1 11ý2 ~ 22

So that with Eqs. (28) and (29),.

h1h3 1 ýl -hgd3vhlh 2 + h2dgzwhlh2
-3 h 2 3 h hlh1 (40)

3 h1dg 1vh 2 h3 - h d7 uh2h 1
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0
h h-j 2+ 22 -h3dg 1 whzh 3 2 h3 d+3 uh3hgh -.1 (41)

2 ld ivh_2_h3 h d-- h 2 h3(41h

hlh 1 2 3 2h 2 2h 3

h h3 lý -h d 3vhlh 2 + hdwh lh-13
S htdvh2 h3 2 h2d 3 1 (42)

h31 1 2 3 d- hh3h h- 2 2

13 2 -hldtlWh~h2 + h3da h hu -1
1 2 2 h2h 3 (43)

h1 de 1 vh 2 h 3 - hzdt 2 hlh3 U

an these constant valued surfaces. Also, for orthogonality of •

surfaces,

h@

+ + 0 (44)

1232

nI1 hh2 hd3

which generally is satisfied only in the free stream and on the shock, but

is probably too restrictive in R 1 and, therefore, will not be assumed

(Fig. 1). Then it follows that in RI, outside of 0,

2
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(uh 3 )(pwhlh )l + (puh h3 )l (wh )

(uh 3 )(pwhlh2 )g - (p uh1h• (whl) puh2h 3 (-1)

uhZh 3uh(wh3

ý2 ~puh 2h3

(uh3)(pwhlh ) 3 - (puh 2 h 3 )3(wh 1 ) h

ý3 I (uh 3 )(pwhIh)2 )• - (wh 1 )(puh 2 h 3)p 2 3

(45)
(uh 3 )(pwh1 h 2 )I + (puh 2 h 3 )ýl (wh1 )

(uh 3 )(pwh 1h Z)~ (puh2h3 zh1 1 pwhh2

pwh
1

ph

2

3ph h + h(uh 3 )(pwh 1 h 2 )• i + (puh 2 h 3)g (wh1 )

¢3 - 1vhlh3 2 puhzh3 (uh 3 )(pwhIh2 )z - (puh 2 h 3 ) z(wh 1 )

At the shock, these relations are explicitly given for the 4i, 0 derivative

column vectors.

Note that in Ref. 1, the expression Eq. (37) for the axisymmetric case is

unnecessary, as Lrx4j 5 /R - Lr x8/R = 0; for the three-dimensional case,

however, Eq. (37) is an additional relation that must be satisfied.

Note that in Eq. (45) the evaluation of derivatives is to be accomplished

by expressing the velocities in their contravariant form, then operating

with Eq. (14a), in part, for the complete derivative. This process has

been incorporated into Eq. (45).
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Note on the inverse relations:

The expressions in Eq. (45) contain certain derivative terms. Now

consider n sets of values given a priori u), V(1, W , ( 1(l 1) )

(), ( (2) W(), MOz), etc.) , in Eq. (45) with metrics known and
u v ,w 1 etc.

derivatives approximated by some discrete approximate expression

involving (1), .... (n) quantities and the appropriate metrics. Then values

(1) (2n)~~
T 7( lT,( . may be calculated for the first set of values, respec-

tively, and also a(i),. a(n) T(I),... , .(n). . In terms of these quantities,

the partials may be represented accurately, locally, in the vicinity of a

particular set of values by this "finite difference" type approach. In a

certain small region, then, derivatives have a certain "best approxi-

mation," as a number of points have been used for their determination.

Now for two particular sets of values, (j), (j+l), with the best derivative

approximation, a box bounded by planes T(j) = const. , r(j+l) = const.

0(0) = const. , a-(j+l) = const. , T( ), T(j+l) in R exists. In the open region

N (for which these planes are the closure), then, the u(k), v(k), w(k) N

are to be considered as parameters for the inversion of Eqs. (62)

through (65) for a particular set of u(t), v(t), w(t) values 1 < t < n. If

next u(t), v(t), w(t) are varied and the process repeated, then the

dependence upon the parameters can be ascertained by the variances in

surface shape, average values within the box, etc. With this information

the inverse relations suggested later can be performed numerically with

respect to the u, v, w, p, parameters. See also Eqs. (62 through 65).

0
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Consider the special case of plane flow in rectangular coordinates at

constant density (w 0, wz = 0, p = 1, hh h h3 = 1, 02 = 0), then

tpx -v

4yv u

•jz O0

(46)

[ 0 0

0 y 0

•zl O

Note also that for p 1, h. = 1, the irrotationality conditions for the

stream function pair are of the form V 2 = 0; V 2 = 0 with 0. = ýz'

With these relations, transformation from the curvilinear (t l'2' 3)

space to a-, T, Tr coordinates by means of Eq. (15) is now possible. Now

the metrics of the two systems are related by

2 2 2 h~d 2 2 2 2 dT2

ds = h2dl + h h 3d 3  aT )2'a)T 2 8T )2
(2t, 2 +(2

+ - do- 2  ( +• -T 2r

-2 2 -2 2 -2 2

=hdT- +h dcr +hdrr (48)
1 2 3
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and for orthogonality of the two coordinate systems,

=ý ~ ý ý ý ý 0 (49)

aý' 8ý aý aý 2  aý3 aý3 (0
--W +-Yu- ---- -ý-G+~ -a 0 50

@ýl aý2 _ ý 3ý~z 3 a = 0 (51)
5--r ___r -- ýT-~- + -5Ta1

and

Dr- au- 8T Dir Dir = 0 (49a)

Dor L- Do -L- Dr L +r Da Di )r =0o (50a)
DýZ Dý3 'ýZ ag 3  92 '

Do- Do- +DT D- DT+3r D Tr =0 (51a)
3ý 8ý3 ý'E I ýF T1O

The elements of the J matrix (Eqs. 15 and Z5) then become, with Eqs.

(45) and (12A),

o- 'pwh 1h

(C2 + ý2) [( -2 + ) /

X(uh 3 )(pwh 1 h 2 )~ + (Puh 2 h 3 ) ý (wh 1 ) (2
(uh 3 )(pwh 1h2 ) g - (p uh 2 h3 ) ý2(wh 1 )
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aa a____ 2 P'pwh 1 h2

- 2 ) [(C2 + t) - 2)]1I

a1 [c 2 + (i-2 i2

X [pvhlh 3 - p uh 2h 3 (uh 3)(pwh 1h2)g + (puh 2h 3 ) z(wh 1)](4

(uh )(pwhlh,), + (puhzh3) (whl

3T 1 - - a-lu h3 (uh 3)(pwh h2) (puhh 3)t (wh 1  (55
allhih 3  12 1 (5

3 T- CL puh 2h 3(56)

aBT _L ih (uh 3)(pwh 1h 2 ) ý - (p uh 2h 3) a3(wh 1 57

-ý -g- pu 2h3 (uh 3)(pwh Ih 2 ) ý - (wh I)(puh 2 h3) ý

__T _L ~+ E _2T+ 7T (58)

a W 1T a ijT a ~ 59

O3 _ 3 WT I5E3T 80-
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in which coupling exists between the (, 62, 63) and (0, T, 1r) systems.

Note that the order of the system has been preserved as Eq. (45) is

known, and the Eqs. (52) through (60) are 0, • independent. Now the

space R (locally Euclidean) formed by G1, •2,3 is to map (locally) onto

the totally Euclidean space R (T, T, TT) in Fig. 2. For the totally

Euclidean'1 space of (9-,T,1T), it is assumed

-Z- - 1 -2 - 1h K= = const. > 0 h2 = K2 = const. > 0

= K 1 = const. > 0 (61)
33

so that all components of the curvature tensor are zero throughout R.

Then, from Eqs. (48) and (52) through (60),

1 h(uh 3 )(pwh1h )a + (puh 2 h 3 )gl(wh 1 )

' -l(puhzh 33) (uh 3 )(pWhlhz)) - (puh h3 )6 (wh -
S2 2 )

KF 2 -CI2 ( hh)2Ki2 a, -(puhzh 3 )Z
1 Kl1 2-

X 1 +F(uh 3 )(pkvhlh 2)a3 - (pubzh.3 )g(whi)]21/ (62)
(uh )(pwhlh2 )g2 - (whl)(puh h 3 ) j1

1 1 All the Christoffel symbols vanish for constant metrics.
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here K is chosen such that

K a' > u [(uh 3)(pwhlh 2):3 - (puhzh3 )ý( whl) 2
1-a 1  - •{h

1l' 2 l uh3 (uh 3)(pWh 1h 2)9? (Whl)(puh 2h 3) ý2

throughout R, and (arbitrarily), T > 0 in the mapped octant. The

constants here also are to be such that Eq. (25) conditions are met.

Similarly,

I = puh 2 h 3  12 (uh 3 )(pwh1 h)2 )• + (puh2h3) w ]
1(1 2 + +2 [ - h )(Pwlz k -,17 3 )(wh 1 7

2 1

where

X[ 2 2 2 + _i• ) +- ,,<X I p - ( i pu )2 g2 ( h 3 ~ )( pwh + h) L j +u 3 ( wh h ) (puh 2h3 ,( h 1 ) ý 12 1/

2 2 (3

I, -Z(puhzh 3 )(cz + ý)(l g22) 2t2

Sp (uh 3 )2 ru3(pwh I h2 ) + (puh2h3) (wh 1) 2

+ (2+ (),- ,pvh•h. - , u , ,, , _ , .,)(pwhuh 2  - (puh,.3) ,,,.,>l (64)
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Again, K 2 is chosen such that a- is real in -R, and _?> 0 in the transformed

octant, representing the physical octant in R. In the same manner as the

above, with (51a)

Tr= +- +I) + 2 ( 8T_ K

__1_ 2 , ~ 22 - a ýa 3  + T

+ _ au-+ + + 2K3 (65,)

where the above partials are to be evaluated from Eqs. (62) through (64),

and (52) through (57) expressions. For values of u, v,w, then

T = T( forZ, 3; u,v,w), o" = o-(I 1 , 2 , 3; u,v,w) and Tr = iT(ý1i,• 2 , 3 ;u,v,w);

provided, for fixed u, v, w at a point, J € 0, j A 0 and T, T, TrEC , and T, T, Tr

are well defined for all VI', ' 3 ER 1 , then an inverse exists for fixed

u,v,w, i.e., 1 =(a-, T, 1Tr;u, v'w), ýZ = ý 2 (0T, Tr;uVW), and

3 = ý3('Tr, Tr;u, v, w). This procedure was suggested earlier in Section

III; note also that p may be included in the same category as u, v, w, in

this inversion.

The constants K, IK, K3 change scale sufficiently in the (0-, T, Tr) system

such that real values of these coordinates are defined for real values of

1l' 3 ~, coordinates. The complexity of the suggested inverse relations

clearly suggests numerical treatment. Here, Tr >'0, and K3 is chosen so
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that iT is always real. From Eq. (12A), in terms of (gi, ý, t3)

coordinates,

(phh)(uh 3)(p-h 1h.),1 + (puh~h3) 
ýj(wh 1)

1 2 3~Ž (-uh3)(pwhi h 2) ý - (puh~h3) ý (wh) 1-)

2 1-2 2 1+[(uh3)(pwhlh2)3 - w(puh2h3),3wI
:k CL-ý -j CL(uhh) (u 3 (wiz(puhphh)(w) hj-- j (66)

and

0+ (1x2

puh h uh 3 )(pwh 1 h 2 )~ -_uh, h3)~ (wh 1 )

2Ph 3  -ý (uh )(pwh h ) (puh h ) (wh C +t

1 -t2 3 1 2t2h2) ý 1 1)

ij(puh h)[ 2 -(uh 3)(pwhlh,), + (puh2h) l~hl + 12

2 32 1- t -(uh 3 )(pwh 1 h2 )g - (p uh 2 h3 ) (wh 1 ) Z+t]

- i( 1 )(1 - ý2(67)
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which is of the indicated form of Eqs. (35) and (36) (the Al, A2 , A 3

functions have 1 , g2 , g3 ,u,v,w as arguments), therefore, providing a

means of construction of the 0, • surfaces.
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IV. THE TRANSFORMED SPACE AND THE
RESULTING SYSTEM OF EQUATIONS

In the prior section, the inverse relations necessary for Eqs. (5) through

(9) tobe written entirely in terms of (T-, T, Tr) coordinates involved an

approximate inversion ofEqs. (62) through (65) \with u, v, w, p, held fixed.

The transformed system is, therefore, determined to within as close an

approximation as desired in a neighborhood of a point in (C-, T, Tr) coordi-

nates mapped from (g1,6 2,p, 3 ) coordinates byEq. (12)or(1Za). For a

numerical marching procedure involving finite difference methods, on the

basis of the transformed equations, the additional calculational error due

to systematic errors for the approximately determined functions in small

regions may be made to possess a small effect in total error by suitable

adjustment of mesh size, etc. , in the finite difference approach.

At a point in R at which velocities u, v, w exist, then it follows that, with

h = h 1 (r, T, T; u, v, w, P) , h 2 =h 2 (TT, Tr;u,v,w,p) , h 3 = h 3 ((, T, r; u, v, w, p),

(uh3 )(pwhlh 2 )h + (puh 2 h3 )l (wh1 )

U - a -Ip h2h3 (uh3) (pWh h )• (puh h3) 2(Whl
PU 3  12 - (u 2 h3 ) w 1)

'-1_ l'-1 (uh3) (pwhh) - (ouh h (wha h9~auh h 3 1Z phh~~
+ 1vpuh 2h 3  h 3 3 3 (68)

h 91 h 391 (uh 3 ) (p h 1h) - (whI)( puh2h 3 ) 2

-39-



h2z - 1 -'puh- 2 h 3  (uh 3 )(pwh h1h + (puhzh 3 3 1(wh 1)I

: 23 (+ + (uhh3) (p whh (puh1 2 hW3 )l
1 i 2)C , 11 3 2 2puhdh

h 2 p~uh2h 13 h 2w

h 2_1( lcZ + ý)(1 3" +(/- 2' 2) 1• 2 1/8 2

2 1 -2 + --- h• 3 -C + to1

(uht) T(pwhe 1 h + (puhe2h) e ) (wh 1
jlpvh lh 3  puh2 h3  ýu-h 3 )(pwh lh 2 ) ý - 1ph h ) )wh I

2 2

hThe h, 2, 2 Txes

+ N"#+i+ laT +3 l lO 8(r(70

h3 t t3 F-3

where the inverse relations have been used throughout in the metrics and

the t 1 , 2)3) system. The 'u, 'v, w are then, respectively, parallel to

the T., T, ITr axes.

If the contravariant form for the velocity is assumed, - = Zh vne , where
n n n

n nv = vn/hn and v are the components of a contravariant vector, then the

transformation of components in R and . is related by

n v n =() (71)•n=E~75F•- (71)

m m Mat
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where n are T, G*, Tr, respectively, for n = 1, 2, 3; these forms aren

essentially Eqs. (68) through (70). In the derivation of the covariant

components of Eq. (45), in general,

f i _ f + "fmji. (14b) or (72),j8j • m

where fi are the covariant components, and (,j) denotes differentiation with

respect to ý.Y In performing operations on P, 0 derivatives with Eq. (14b),

it may be seen that Eq. (45) results.

It remains now to express the original system in terms of the approximate

system (for numerical analysis purposes) in terms of ((r, T, Tr) coordinates.

The form (Eqs. 5a through 9a) is invariant in all coordinate systems

herein. From previous considerations, then, the ((r, T, Tr) system in R1 is

of the general form (excluding the energy equation for the present)

ij2 -ja 0-- x v + g (73), (74), (75)

v x X11 + hi/+! a xi

(p V) , = 0 (76)

where the metrics of the transformed system are known as combinations

of the metrics of the R 1 original system; the velocities of the original
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system, written in contravariant form are then simply contravariantly

transformable into the

u v
S2 h 3

contravariant components in R .

Here

=11 /2 ', 1/-'22 -1/2 '-33 -1/2
hI = g K h 2 =g = K2  , h 3 =g = K3

In Eqs. (73) through(77) the xi independentvariables represent (9-, T, 1T),

respectively, for j = 1, 2, 3. In that a finite difference approach has been

suggested throughout, these transformed equations in R1 with known

boundaries are to be solved in R 1; solutions in R1 are then obtained through

Eqs. (62) through (70), and (ia). In Eq. (73), p, p are taken as scalar

quantities and transform as scalars. The new form of the energy

equation will now be discussed.

In Ref. 1, f(ry2) PR-Y arises from the integral

dT - dy (77)

(-T 2)/y
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On a streamline Eqs. 68 through 70 become

- -tThl (78)
stm.stm.

= - 2+__ (79)

I (+) h 2 (l -
stm. s ti.

= + w w-.__ (80)
= ' +-' + h-- + 32

_j ~h v V33] stm .stm.

and the u, v, w components in R 1 may be expressed in terms of deriva-

tives of the independent variables by Eq. (27) along a streamline. In

general, (r = -(g1 , 2,3; u, v, w,jp), T = T(Ig, p u, Uv,W, p), and

1T = iT(ý 1 , P2, z3; u,v, w, p) and inverses were numerically determined in the

neighborhood of a point with u, v, w, p fixed as 61 = 1(0, T, T; U, V, W, p)

g 2(a-, T, I ; U, V, W, p) , 3 = ý3 ((Y, T, iT; U, V, W, p) or alternatively, as

1= 1(-, T, Tr; 'U, 'V, 'W, , 2 = 2((r, T, Tr; U, V, W, p), 3 3=g 3 ((rt, T I;U V, W, p).

On a streamline, however, ratios of velocities in a particular coordinate

frame are known as ratios of derivatives, as indicated for the 0, 4)

surfaces by Eqs. (40) through (43). Therefore, with Eqs. (28) and(29), the

two integrals representing stream surfaces arise from

-dT/T -diT/ir (81)
stm. + +d

4st3r.
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-do-/a- _ _ _ _ T _ (82)
+ 2 2 1 1 + 2 + d 3

12 2g 1-~ c+
stm. stm.

where 2 >C2, and 2 < 1 outside of the JE 12 stagnation streamtube

approximation surface. Provided h h and the remaining geometri-
1 ' 2' 3

cal quantities of Eqs. (78) through (80) are prescribed, then velocity ratios

on streamlines are determined. On a streamline, from Eq. (12a), or

Eqs. (81) through (82),

const. const.
[(T +T ( 1/2 (83), (84)

const. (85)

[23 (C2 + ý2) (I - g)]1/

Next, for a particular a-, T, iT (starting from a location on the shock front),

it is then possible to determine relations of the form 1 = 1 (T-, T, Tr)

2 = ý 2 (T, T, iT) , ý3 = 3 (a-,r, T) on streamlines in R. Provided the tangent

streamline is next constructed over a small distance from the original

surface, new (a-, T, Tr) values are obtained in such a manner that the

streamlines in (a, T, Tr) space, R, are a priori determinable. Then in

form, locally,

pp- f[1 1 (T, T, r), 12 (a T,7T)] (86)
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Although this procedure places heavy emphasis on numerical routines to

obtain inverses [and surfaces u/a, v/v, w/^v, for T-, T, Tr, h, 2, h3

specified from Eqs. (83) through (85), and (78) through (80) such that

=i = T, Tr;u, v, w) = •(-, T, Tr;u,v, , etc.], essentially, these are

necessary steps for the particular transformation chosen (Eq. 12).

Also, as hl,,3 = constants, in Eqs. (73) through (75), and for velocities

uvw, = 0. Provided, next, the Eq. (75) is replaced by Bernoulli's

equation, then together with Eq. (86), after elimination of p, p terms,

three nonlinear coupled equations in terms of u, v, w result, similar to

the end result of Ref. 1. These equations are then subject to numerical

methods for solution in a manncr analogous to that of Ref. 1.
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V. SOME REMARKS CONCERNING NUMERICAL ANALYSIS SCHEMES
FOR IMPROPERLY SET ELLIPTIC SYSTEMS OF EQUATIONS

The system (Eqs. 73 through 76) and the energy equation (Eq. 86)

have been implicitly given; the explicit form may be given either in terms

of u, v, w or u, v, w- velocity components. In terms of the latter

system, and u, v, w velocities, the system is of the form

C1 C1  Ci a. B
11 12 13 ax1  11

C1 C2 CZ 3  a + B 0 (87)

(i i Ci awB
( 1 32 C 3 3  Bx B 3 3ii

where x denotes a-, r, Tr for i = 1, 2, 3, respectively.

In that the sonic surface may be a priori determined in the R 1 space,

the transformation into the R 1 space follows. The difference scheme,

starting from the shock, is then required to satisfy conditions on the

given sonic line. In Eq. (87), the elements of the matrices are,

respectively,

P [C2 -. z .d V _ 1 • / -
0 [Cz - (u2+2+w )w(. 2f /- (88)
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'\c -(U 2+ ' v](+ J) (89)

where C 0 1 + 1m2 , and

-2 by 1)

11 1 2iý r2+ z
Il = c (U2 E ~j~!iv1-

11

2~~ 2l +F 'ý2v2"+l-/y
C IC 00-i iiC- (u w

Z-yf -Y - I/L o

3 22i +1y __ Z2 21/11-y -Y 1 +0 (u ~

2 1 ¶FCZ -(y 2 + +, +zr - i'~ -2+121--
C1 2 =~ [cc w) o[u v w

2 [C2 - ~2 + ,2 + 2)] -Y/Y- I /( ' v)
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3w ___yF 1 C ,2 +",'2 +' 21-Y/Y- IC12 , 11 - y - 00C - u +

E- 0(0~!l~ v +)w~ y/ +21

13 J(~)/Y(i)[c~ (u +Z+2)Y1

c 2 2 " I [ -2 . /Y

1 3 3Y0

3 1 [C2 -ýz + 1.~2+ ?)]F- Y/- l1(1) .

Bx [C? - ou + -v + + W T-) (- -/ Y- +

+iIfI[COO (U•+ZZ 1 iY(j) (. y 1 )(fix 1 + f 1 1? )1

ý[C2 12 + ýz + -2 / - I f-yly I

2 3 2 3

0220 C22 23 2
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C [ -<C -(U2v +w

X<(TT [c 2 -('2~ + 2 + 112)]1/1 (y- ) Y/-Y1 1-/1Y

c2 v

11

-3' +

11

XI[C2 -(2 + "2+ 2 1
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[cZ ý +~ -'VI 1 ( w +fO 2 x 1 )

x I=~[C?-( + v? + w-)]I

-o0 c 3 -=0 C 1 =0 3 0
31 31 33 C3 3 .0

31

xI[cz (U-Z + -V2+ W-2)](.1

32
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2 + + f"W2)] 1/ly- ( V Z I
C 3 f co(u +v +w , .

B C _ u 2+"v2 + w 2)P/ 'Y- 1 1 ~Lf-Y/Y-¾(f I + fI33 c --1 ) 1 1~ 1 '1zx 2

3 [ -- _2 ++2 + ý2( by- 12) lY/Y- 1

The system Eq. (87) is then subject to finite difference solution in the

manner of Ref. 1; solutions at each point of the mesh may be trans-

formed into the physical Rl1 space by the inverse relations between0

R1and R I previously developed. The above problem is then reduced

to simultaneous solution of algebraic equations at points of the mesh.

To conclude, finite difference methods for problems of this nature have

been discussed in Refs. 4 and 5 for the plane case of the Laplace

equation. A discussion of Ref. 4 has been given in Ref. 1; a brief

discussion of Ref. 3 will be given here, in that methods of this type are

suggestive of methods to be used for the problem in question.
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For the Laplace equation 1u + u = 0 , u(0, y) = u(i, y) = 0

u(x, 0) = O(x) , u (x, 0) =(x) , then u(x, y) N7-2= F, ake sin kx00 kY k= I1

+ F bkek sin kx; in Cudov's subsequent analysis of the Cauchy
k=l

problem, the second term of the solution is dropped throughout to

simplify the results. Then provided in 0 <_x_< 1T , 0 _<y_< Y , with
Co M2

Ju (x, y) dx < M , the norm on the initial data is taken as

ol 0 =[Y ]e"1''I (90)

and the norm on u is taken as

1/2
HuH = sup u2(x, y) dx (91)

then lul sIl il•[ 10" in:terms of these norms, the effect of round-off

errors in various difference schemes are determined by assigning

approximate values to the function u(x, 0) = O(x) on x = x = nh, with

h = iT/N, n = 1, • ., N - 1 and then ascertaining errors between

exact and approximate solutions on xn lines for 0•< y < Y. The "size"

1 2 Unique solutions that depend continuously on the initial data under
certain restrictions on the class of solution functions are considered
in 6 udov's paper.

-53-



of u(y) on the mesh is then taken as

u(y)I h = h UZ(xnY)1/2 (92)
n= 1

Next for u(x, 0) =(x) discretized as u(xn, 0) = u(xn, 0) - n

n = 1 ., N -i, then u(x, y) = hN7T E a ke sin kx, [ where ak are

k= 1
determined from the u(xn, 0) boundary condition] so that the estimate

on x lines becomes from (Eq. 92),

_ - e) (N+1)(YY) + 6e(N- )y (93)
i - Y )

N-i 1 1/2
where M is a constant and 5 [h E 6J Now for a system of

n= I1

Cauchy-Riemann equations on the uniform rectangular net with steps

Ax = h, Ay = T = T(h) with T(h) -• 0 as h - 0, a norm on the initial data

similar to (Eq. 90) is chosen

1:AZ 2kYl 1/2 (94)
01 1 L0h =k= k

where the ýak are coefficients formed from the expansion of n = (nh)

in terms of the orthogonal systemj '24 7- sin knhl, k = 1, N - 1.

-54-



Now the difference scheme in T, h is stable for

0<y_<Y
I Ilu(y) II h -<5K I 1 01 hý : (95)

0< h_<h0

If the difference scheme has solutions of the form

u(mh, nT) = U = sn(k;h) sin kmh, then the necessary condition ofm

stability, from (Eq. 95), is Isn(k;h) I < KekY, (0< hT <Y), with a

strong form, Isn(k;n) I _ Keky, 0< nT< y. If next 1/T [1og s(k;h)]- k

as h-. 0, for 0 <k_<k 0 , then u converges to the exact solution in the

norm Eq. (92). Cudov then proceeds to give seven difference schemes

with conditions on T, h such that the strong stability condition is met,

and also gives the.rror of approximation for the Cauchy-Riemann

systems, i. e.,

n+l n n n n+l n n num -u v +v v -v u -u
m m m+l m-1 m m_ m+l2 i-i (96),Z h T Zh 9o

error of approx. = e = O(T) + O(h2

stable for T/h = C = arb. const.
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n+l n n n n n nUrn-U+ 1v 1 Um+1m - 2ur +u
rn m+1 rn-I T r-lI rn r-i

T 2h 2 h2

(97)
+1 n f n n n n

vn+l - v u - 2vn - v
rm mr rm+l m-1 T m+1 m m-1

"T 2h - h h 2

error of approx. = e = O(T 2) + O(h2

stable for T/h = C = arb. const.

etc. Now for the error of approximation comparable to the round-off

error (from the stability of solutions with respect to the initial data

strong stability criteria), the step size h is determinable so that

maximum computational accuracy may be obtained. Analysis of this

type is necessary for the problem considered in (a-, T, 1T) space;

however, extension to nonlinear probl~ems presents considerable

additional difficulty so that for purposes\of computation, the above

analysis serves only as a model for estirmation of certain norms such

that the computational solution is manageable.
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Fig. 1. Coordinate System and Velocity Component System
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SHOCK C' CONST.,
• /r,• / 7r = CONST.

." •--/ KNOWN SONIC
/ ~SURFACE--

A(OR 7/r =CONS.

-
77 :CONST.

7,CONST

STAGNATION LINE
APPROXI MATION THREE-DIMENSIONAL

APPROXIMATION BODY

TOTAL APPROXIMATION
SURFACE

Fig. 2. Transformed Coordinate System
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